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Recent advances in mouse models of experimental asthma coupled with vast
improvements in systems that assess respiratory physiology have considerably
increased the accuracy and human relevance of the outputs from these studies. In
fact, these models have become important pre-clinical testing platforms with
proven value and their capacity to be rapidly adapted to interrogate emerging
clinical concepts, including the recent discovery of different asthma phenotypes
and endotypes, has accelerated the discovery of disease-causing mechanisms
and increased our understanding of asthma pathogenesis and the associated
effects on lung physiology. In this review, we discuss key distinctions in respiratory
physiology between asthma and severe asthma, including themagnitude of airway
hyperresponsiveness and recently discovered disease drivers that underpin this
phenomenon such as structural changes, airway remodeling, airway smooth
muscle hypertrophy, altered airway smooth muscle calcium signaling, and
inflammation. We also explore state-of-the-art mouse lung function
measurement techniques that accurately recapitulate the human scenario as
well as recent advances in precision cut lung slices and cell culture systems.
Furthermore, we consider how these techniques have been applied to recently
developed mouse models of asthma, severe asthma, and asthma-chronic
obstructive pulmonary disease overlap, to examine the effects of clinically
relevant exposures (including ovalbumin, house dust mite antigen in the
absence or presence of cigarette smoke, cockroach allergen, pollen, and
respiratory microbes) and to increase our understanding of lung physiology in
these diseases and identify new therapeutic targets. Lastly, we focus on recent
studies that examine the effects of diet on asthma outcomes, including high fat
diet and asthma, low iron diet during pregnancy and predisposition to asthma
development in offspring, and environmental exposures on asthma outcomes. We
conclude our review with a discussion of new clinical concepts in asthma and
severe asthma that warrant investigation and how we could utilize mouse models
and advanced lung physiology measurement systems to identify factors and
mechanisms with potential for therapeutic targeting.
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1 Asthma epidemiology and
pathophysiology

Asthma affects approximately 10% of the population and has
higher prevalence in developed countries (To et al., 2012). The
World Health Organization (WHO) reports that 455,000 deaths
were attributed to asthma in 2019, and that asthma is the most
common chronic disease affecting children (WHO, 2022). The
global prevalence of asthma varies between sources, including the
Global burden of disease, Centers for Disease Control and
Prevention, the Global Initiative for Asthma, and European
Respiratory Society/American Thoracic Society reports, at
224–309 million people, 7.8%, 1%–18%, and 5%–10%,
respectively (Diseases and Injuries, 2020; Global Initiative for
Asthma, 2021; Louis et al., 2022). Asthma in adulthood is both
under- and over-diagnosed, which may be attributed to multiple
definitions of the disease and suboptimal adherence to diagnostic
guidelines (Aaron et al., 2018; Akinbami et al., 2020; Louis et al.,
2022). Globally, around 3%–10% of asthma is classified as severe,
which predominantly affects females (Busse et al., 2000; The
ENFUMOSA cross, 2003; Larsson et al., 2018). A cross-sectional
study reported that within a randomly selected cohort, 1.1% had
severe asthma and of the asthmatic cohort, 9.5% had severe disease
(Ronnebjerg et al., 2021).

The pathophysiology of asthma is underpinned by chronic
airway inflammation. Genetic, epigenetic, environmental risk
factors, and a combination of innate and adaptive immune cells
(including macrophages, neutrophils, innate lymphoid cells,
dendritic cells, helper T cells [TH]1, TH2, TH17 and TH22 and
follicular helper T cells [TFH]) are linked with asthma pathogenesis
and severity. Severe asthma is heterogeneous and can be broadly
characterized by different mechanisms (endotypes; type-2 [T2] high,
T2 low, or non-T2) and various clinical presentations (phenotypes)
(Kuruvilla et al., 2019). These mechanisms and factors contribute to
changes in histopathology, including increased airway collagen
deposition, mucus cell hypersecretion metaplasia, airway smooth
muscle (ASM) hypertrophy/hyperplasia, reduced lung function, and
airway hyperresponsiveness (AHR), and ultimately cumulate into
symptoms of chest tightness, wheezing and/or shortness of breath.

1.1 Cellular pathophysiology

The T2 high endotype of asthma (commonly associated with the
allergic phenotype) is comprised of two phases: the early
(sensitization) and late (effector phase or challenge) phases. In
the early phase, alarmins are released by epithelial cells in
response to allergens and can induce cytokine production in
type-2 innate lymphoid cells. Dendritic cells uptake allergens,
migrate to lymph nodes, and present antigenic components to
naïve T cells, which induces TH2 and TFH cell differentiation.
Historically, TH2 cells have been recognized for their role in
T2 cytokine production (interleukin [IL]-4, −5 and −13) in
airway inflammation, airway eosinophil infiltration,
immunoglobulin E class switching and AHR (Pope et al., 2001;
Agrawal and Shao, 2010; Kudo et al., 2013; Doran et al., 2017). TFH

cells are also implicated in mediating the early phase of allergic
asthma. However, unlike TH2 cells, TFH cells predominantly

produce IL-4 and IL-21 (Coquet et al., 2015; Kobayashi et al.,
2017). TFH cells also produce IL-17 and have been shown to
induce IgE class switching in severe asthma (Zaretsky et al.,
2017). TH2 and TFH cells support IgE antibody production and
B cell maturation. Deficiency in Bcl6, the master regulator in CD4+

T cells, reduces TFH numbers and IgE, but does not affect
T2 cytokine responses or eosinophilic inflammation in the
airways (Kobayashi et al., 2017), highlighting the function of
these two T helper cell subsets in driving allergic asthma. This is
reinforced by evidence of TH2 differentiation in response to
allergens in the absence of IL-4 (Jankovic et al., 2000).

The late phase of allergic asthma is an established T2 response,
characterized by eosinophil hematopoiesis, chemoattraction and
activation, induced by granulocyte-macrophage colony-
stimulating factor, IL-3 and -5. AHR presents at this stage,
alongside features of epithelial damage, tissue remodeling, and
chronic airway inflammation. Epithelial to mesenchymal
transition presents after recurring exacerbations, which results in
airways remodeling (Kudo et al., 2013). This, in conjunction with
airway narrowing and tissue inflammation, contributes to
symptomatic dyspnea, wheezing or whistling upon exhalation,
and chest tightness (James and Wenzel, 2007; Wenzel, 2016;
Quirt et al., 2018). Tissue resident mast cell numbers increase
and express FcεRI, a high affinity IgE receptor. Basophil
granulocytes are coated with IgE and IgE cross-linking occurs
(He et al., 2013). Pro-inflammatory responses are then mediated
by leukotrienes, prostaglandins, neuropeptides (substance P and
neurokinin A), calcitonin gene related peptide, and histamine (Kim
et al., 2018).

The T2 low endotype of asthma (TH1 and TH17 high) is
associated with more severe disease, which may progress to
become steroid-insensitive. Patients with severe asthma have
lower atopy than patients with non-severe asthma, and IgE,
blood eosinophil numbers and fractional exhaled nitric oxide
(FeNO) do not differentiate severity (Moore et al., 2007; Guan
et al., 2013). Notably, blood and airway neutrophil numbers have
been shown to be increased in severe asthma (Crisford et al., 2021).
Severe asthma presents with lower lung function and marked
bronchodilator reversibility compared to mild-moderate disease.
Symptoms typically present daily and disease duration is longer
with sinusitis and pneumonia (Moore et al., 2007).

Respiratory infections increase susceptibility to severe asthma
development, which can become steroid-insensitive (Wark et al.,
2002; Hansbro et al., 2004; Cho et al., 2005). Airway epithelial cell
bacterial colonization with Chlamydia pneumoniae, mycoplasma
pneumoniae and staphylococcal endotoxins have been linked
with asthma severity in both allergic and non-allergic endotypes.
Furthermore, enterotoxins released by Staphylococcus aureus may
act as sensitizing agents and superantigens that can activate T and
B cells in human mucosa, that have been associated with severe
asthma (Bachert and Zhang, 2012; Sintobin et al., 2019).
Haemophilus influenzae is also implicated in the pathogenesis of
severe disease (Simpson et al., 2007; Wood et al., 2010; Green et al.,
2014). In addition to bacterial infections, respiratory viral infections
such as respiratory syncytial virus (RSV), rhinovirus and influenza,
have also been shown to contribute to asthma severity (Wark et al.,
2002; Hansbro et al., 2008; Liao et al., 2016) and it is now well
established that rhinovirus and RSV are risk factors for the
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development of atopic and non-atopic asthma, respectively (Mikhail
and Grayson, 2019). Furthermore, rhinovirus, RSV, and influenza
can exacerbate established asthma (Mikhail and Grayson, 2019),
which can also become steroid-insensitive. Irrespective of the
endotype or phenotype of asthma, the severity of asthma can be
associated with increased potency of bronchoconstrictors but also an
increase in the maximum contraction of ASM that can lead to
complete airway closure in fatal asthma (Woolcock et al., 1998).
Therefore, improving outcomes for patients requires an
understanding of the mechanisms controlling airway reactivity
and the influence of inflammatory mediators.

1.2 Anatomical pathophysiology

Changes in lung function, encompassing AHR and baseline
airflow obstruction, in asthma and severe asthma are underpinned
by many disease-driving factors. AHR is underpinned by
hypersensitivity and hyperreactivity of smooth muscle to various
stimuli [non-specific irritants, pharmacological agents (e.g.,
methacholine), and inflammatory mediators (e.g., histamine,
leukotrienes from mast cells)], as well as impaired bronchodilator
responses. AHR can occur on the background of inflammation and/
or remodeling, however, this is not always the case and highlights
that AHR can occur both dependently and independently of
inflammation and remodeling in people with asthma and in
mouse models of experimental disease, irrespective of disease
severity.

Clinically, AHR is defined as a 20% decline in forced expiratory
volume in 1 s (FEV1) after bronchoprovocation (Lotvall et al., 1998).
The paradigm of AHR pathophysiology comprises tissue
remodeling and structural changes to the airways and
parenchyma. AHR can occur in non-asthmatics and thus may
not always be indicative of asthma, however, AHR has been
correlated with asthma severity (Deykin et al., 2007). ASM
hypertrophy and hyperplasia, altered ASM calcium signaling,
changes in epithelial cell composition, and nervous system
activation, are also contributing factors to AHR. As both asthma
and severe asthma are highly heterogenous, the contribution of one
or more of these disease drivers to changes in lung function is
patient-specific. However, persistent AHR can often coincides with
airway remodeling, thus in severe asthma, and particularly in
steroid-insensitive phenotypes, more severe AHR may arise from
being unresponsive to current therapies.

Chronic inflammation drives smooth muscle tone,
bronchospasm, edema, and mucus secretion. Airways mucus
plugging also substantially contributes to asthma-related
mortality rates (Worren et al., 2018). Other asthmatic
phenotypes, such as obesity-associated asthma, can result in
restrictive lung physiology as breathing at low lung tidal volumes
increases AHR, where actin-myosin cross-linking in ASM may
contribute to resistance from muscle stiffening (Fredberg et al.,
1997). Neurological and psychological factors have also been linked
to asthma presentation (Rosenblat et al., 2022).

It is also important to consider the contributions of different
regions of the lung to AHR, including the small airways. In
asthmatic patients, the small airways have greater inflammation
(as measured by increased eosinophil numbers) than the larger

airways (Hamid et al., 1997) and increased baseline resistance when
compared to the small airways of non-asthmatics (Wagner et al.,
1998). In vivo exposure of these small airways in asthmatic subjects
to histamine resulted in greater increases in airway resistance and
less reversibility with a non-selective β1 and β2-adrenoceptor agonist
when compared to responses in non-asthmatic subjects (Wagner
et al., 1998). Increased airway resistance can be associated with
increased inflammation (Hamid et al., 1997) and airway wall
remodeling (Burgel, 2011). In vitro studies have also shown that
the small airways are more sensitive to contractile mediators
(Mechiche et al., 2003), and less sensitive to β2-adrenoceptor
agonists, than the large airways (Finney et al., 1985). However,
whether there are differences in small airways AHR across the
different endotypes and/or phenotypes of asthma, remains to be
determined.

1.3 Mechanisms of AHR

1.3.1 Structural changes
The lung structural changes of patients with asthma can include

epithelial cell shedding, goblet cell hypertrophy, basement
membrane thickening, increased ASM size (hypertrophy) and
growth (hyperplasia), and increased vascularization (Hall and
Agrawal, 2014; Szefler, 2015), that are further increased in severe
asthma patients (Benayoun et al., 2003; Woodruff et al., 2004; Pepe
et al., 2005). This relationship precipitated the dogma that AHR in
asthma is caused by increased ASM hypertrophy and hyperplasia.
However, some studies have shown that reducing the amount of
ASM in the lungs of patients with asthma using bronchial
thermoplasty does not improve overall lung function (Castro
et al., 2010). Thus, more/larger ASM is not the sole factor
contributing to AHR, which raises the question of what other
factors contribute to increased AHR.

1.3.2 Altered ASM calcium signaling
In asthma, ASM can be hyperproliferative, hypersecretory, and/

or hypercontractile. ASM can be hypercontractile due to intrinsic
changes in actin-myosin cross-linking, and can also release
extracellular matrix factors (such as collagen types I and III,
fibronectin, and elastin), cytokines that can promote
inflammation (Belvisi et al., 1997; John et al., 1998; McKay et al.,
2000; Hirst, 2003), and chemokines that can recruit immune cells
(e.g., eotaxin). ASM heterogeneity may also be present between large
and small airways, where ASM hypertrophy in large airways occurs
in both non-fatal and fatal cases of asthma, and ASM hyperplasia
occurs in both large and small airways in fatal asthma only (James
et al., 2012). Importantly, both of these features are associated with
increases in extracellular matrix deposition (James et al., 2012).
However, whether these ASM changes are asthma endo/phenotype-
specific is yet to be determined.

ASM tone and hypercontractility can be driven by calcium
signaling pathways: the calcium oscillation pathway and the
‘calcium sensitivity’ pathway. These can be activated by
contractile agonists such as methacholine, and these pathways are
fundamentally similar in both human and mouse airways (Bai et al.,
2007; Ressmeyer et al., 2010) (Figure 1). Calcium oscillations involve
calcium release and reuptake between the sarcoplasmic reticulum
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(SR) and the cytosol. The release of calcium from the SR into the
cytosol occurs through the activation of the inositol trisphosphate
receptors (IP3R) and/or ryanodine receptors (RyR), whereas
reuptake occurs via the sarco/endoplasmic reticulum
Ca2+–ATPase (SERCA). Increases in cytosolic calcium result in
the activation of calmodulin and myosin light chain kinase,
resulting in myosin light chain phosphorylation and muscle
contraction. In contrast, calcium sensitivity involves signaling
through protein kinase C or rho-activated kinase, that can
phosphorylate and inactivate myosin light chain phosphatase
(MLCP). The resulting contractile apparatus becomes more
sensitive to Ca2+ and contraction.

Changes in intracellular Ca2+ levels can be detected using
confocal or two-photon microscopy in ASM cells within
precision cut lung slices (PCLS) loaded with fluorescent Ca2+

indicator dyes, such as Oregon green (Sanderson et al., 2008).
This allows for assessment of contractile responses to agonists
such as methacholine. Importantly, muscle contraction in
response to methacholine occurs when calcium oscillations are
abolished by treatment with caffeine and ryanodine to clamp
intracellular calcium ([Ca2+]i) levels. Under these conditions,
airway contraction is solely induced by increased Ca2+-sensitivity,
whereby reduced MLCP activity maintains muscle tone (Bai and
Sanderson, 2006).

Extracellular calcium can also contribute to ASM tone. Calcium can
enter the cytosol through L-type voltage-operated Ca2+-channels in
response to membrane K+ channel-dependent depolarization
(Marthan et al., 1989), receptor-operated channels or ion channels, or
store-operated calcium channels. Although calcium signaling has been
found to be altered in disease states such as asthma and chronic

obstructive pulmonary disease (COPD), this does not appear to be
related to changes in receptor expression or levels, but rather
increased sensitivity to the changes in calcium within the muscle.

1.3.3 Role of inflammation in AHR
It is now well established that inflammation and AHR can occur

independently in people with asthma or severe asthma and in
murine experimental asthma and severe asthma. However, in
some cases, increased presence of inflammatory cells and
inflammatory cytokines/chemokines, can contribute to increased
AHR. Macrophages and neutrophils can increase AHR through
their release of cytokines such as IL-13. Inflammatory cytokines and
chemokines can also be released from structural cells, such as ASM,
within the lungs. IL-13 can directly act on the IL-13R and IL-4R on
ASM to increase inflammation by up-regulating pro-inflammatory
cytokines, such as IL-1β and TNFα, and directly enhancing
G-protein coupled receptor agonist-associated calcium signaling
(Kibe et al., 2003; Tliba et al., 2003; Vargaftig and Singer, 2003).
Furthermore, IL-13 can induce AHR through epithelial changes,
including increased swelling, permeability, rigidity, and mucus
production (Kirstein et al., 2010). IL-13-induced AHR has also
been observed in response to non-calcium altering agonists such
as potassium chloride, and it has been postulated that IL-13 can alter
contractile machinery in ASM by enhancing sensitivity of
myofilaments or rearranging structural cytoskeleton. IL-13 can
also induce AHR without increasing inflammation (Yang et al.,
2001; Venkayya et al., 2002), and this is thought to be via altering
gene expression of other resident airway cells, including epithelial
cells and ASM cells (Laporte et al., 2001; Lee et al., 2001; Kuperman
et al., 2002; Venkayya et al., 2002).

FIGURE 1
Mechanisms of airway smooth muscle contraction. Abbreviations: IP3, inositol triphosphate; GPCR, G-protein coupled receptor; MLC, myosin light
chain; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; PKC, Protein kinase C; ROCC, receptor operated calcium channel; ROCK,
Rho associated coiled-coil containing protein kinase; RyR, Ryanodine receptor; SERCA, Sarco/endoplasmic reticulum Ca(2+)-ATPase; SOCC, storage
operated calcium channel; VOCC, voltage operated calcium channel.
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1.4 In vivo techniques for measuring AHR

Lung function measurements, including the forced oscillation
technique (FOT), forced expiration (spirometry in humans, negative
pressure-driven forced expiration in mice), and AHR to
provocation, are commonly used as diagnostic tools in humans,
and as tools to assess the severity of respiratory disease and response
to treatments in pre-clinical models (predominantly in mice). FOT
and forced expiration for the purposes of measuring baseline lung
function has been addressed elsewhere (Devos et al., 2017;
Bonnardel et al., 2019), thus, this review is focused on AHR.

In mice, AHR is commonly measured following provocation
with a contractile stimulus (such as methacholine) and this is an
invasive and terminal procedure. The most commonly used invasive
plethysmographs to measure airway resistance to methacholine
provocation in asthma/allergic airway disease mouse models are
the Scireq flexiVent, eSpira EMMS Spirometry, and Buxco
FinePointe Resistance and Compliance systems. Asthma/allergic
airway disease models routinely use the Scireq flexiVent system
to perform perturbations that assess Newtonian Resistance/central
airways resistance (Rn), tissue elastance (H; measure of alveolar
tissue stiffness) and damping (G; index of alveolar tissue restriction),
and/or transpulmonary resistance (Rrs), elastance (Ers), and
compliance (Crs), following provocation with nebulized
methacholine (up to 100 mg/kg) (Kim et al., 2017a; Kim et al.,
2017b; Piyadasa et al., 2018; Ambhore et al., 2019; Kalidhindi et al.,
2019; Ali et al., 2020a; Pinkerton et al., 2022; Tu et al., 2022; Xiao
et al., 2022). Increases in Rn, H, G, Rrs, and Ers, and decreased Crs,
when compared to control (non-allergic) mice is commonly
reported. Whilst the order and timing of perturbations is usually
dependent on the stimulus used to induce asthma/allergic airways
disease, the tidal volume is commonly set at between 8 and 10 mL/kg
and the respiratory rate at 150 or 450 breaths/minute. The Buxco
invasive plethysmograph also measures airway resistance following
provocation with nebulized methacholine (up to 8 mg/kg) (Royce
et al., 2011; Donovan et al., 2013; Royce et al., 2022), however, this
system does not differentiate between central airways and
transpulmonary measurements. Nevertheless, invasive
plethysmography measures key features of AHR in response to
provocation in experimental asthma models and provides sensitive
detection of changes in lung function parameters that are highly
representative of those that occur in patients with asthma and severe
asthma.

1.5 Ex vivo techniques to assess AHR

AHR and its driving mechanisms can also be assessed using
specialized ex vivo techniques. Airway tissues, such as bronchi and
trachea, can be isolated from human lung resections or dissected
from mice, and airway reactivity assessed to contractile stimuli in
organ bath or myograph systems. Trachea isolated from mouse
models of experimental asthma exhibit AHR tomethacholine, which
is a similar assessment to invasive plethysmography techniques
(Donovan et al., 2013) and is a platform to assess airway
reactivity ex vivo. Recent advances in human and mouse PCLS
preparations have also allowed for assessment of AHR ex vivo, with
PCLSs being able preserve the natural tissue architecture and

interdependency of the ASM and the surrounding parenchyma.
PCLS have also been used to assess changes in small airway reactivity
and calcium signaling within ASM cells in response to contractile
and bronchodilator stimuli (Donovan et al., 2013; Bourke et al.,
2014; Donovan et al., 2015; Liu et al., 2017). Application of this
technique in mouse models of experimental asthma has provided
significant insights that complement and advance studies on isolated
larger airways, where airway inflammation has been shown to alter
airway reactivity (Sukkar et al., 2001; Tliba et al., 2003; Zhang et al.,
2007). PCLSs from house dust mite antigen (HDM)-treated mice
have increased contraction to methacholine (measured as a
reduction in airway lumen area) compared to PBS control-
treated mice (Liu et al., 2017). In contrast, PCLSs from
ovalbumin (ova)-treated mice have reduced methacholine-
induced contraction despite having increased AHR when
measured in vivo and in isolated trachea (Donovan et al., 2013).
Whilst this technique provides a unique platform to assess AHR and
calcium signaling in ASM, it is important to consider that airway
stiffness may impair airway contraction and confound assessment of
AHR in models with robust airway remodeling.

1.6 In vitro techniques to assess AHR

It is possible to examine and measure some biologically relevant
properties of ASM in isolated cell culture systems, such as changes in
calcium signaling using calcium dyes (Bourke et al., 2011) and its
hypercontractile properties using collagen gel preparations (as a
surrogate for contraction) (Matsumoto et al., 2007; Bourke et al.,
2011). The properties of ASM in vitro can be affected by different
culture conditions, however it is now well accepted that isolated
ASM cells from patients with asthma have altered contractile,
proliferative and secretory function compared to those from
subjects without asthma [reviewed in (Zuyderduyn et al., 2008)].
ASM from patients with asthma have increased contraction to
histamine compared to ASM from subjects without asthma as
measured by a decrease in collagen gel area (Matsumoto et al.,
2007). However, whether these properties of ASM are also observed
in cells isolated from mouse models of asthma remains to be
determined and may provide a new platform to accelerate drug
discovery. Lung-on-a-chip technology allows in vitro modeling and
study of human musculature and may be a feasible approach for
such studies. Engineered human airway musculature can
recapitulate healthy and asthmatic bronchoconstriction and
bronchodilation. Inhibition of Rho-mediated calcium
sensitization and contraction in this model has been shown to
decrease basal tone of bronchial smooth muscle and prevent
hypercontraction (Nesmith et al., 2014).

2 Mouse models of experimental
asthma

Murine models of experimental asthma facilitate the
investigation of mechanisms underpinning disease pathogenesis,
the identification of novel therapeutic targets, and are platforms
for evaluating the efficacy and safety of novel therapeutics before
they enter clinical trials. However, mice do not develop asthma
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TABLE 1 Experimental asthma models.

Allergen/
strain/sex

Method of
administration

Model protocol Disease
features

Ref

Ova BALB/c
female

Sensitization: IP
challenge: IN

C.f. Saline IN Kim et al. (2019)

↑ AHR (MCh; Rrs
and elastance;
eSpira, EMMS)

↑ Eosinophils

↔Neutrophils

Ova BALB/c
female

Sensitization: IP
challenge: NEB 5% (v/
v) 30 min

C.f. Saline
aerosolized

Kim et al. (2019)

↑ AHR (MCh; Rrs
and elastance;
eSpira, EMMS)*

↑ Eosinophils

↑ Neutrophils

* = C.f Ova IN

Ova BALB/c
female

Sensitization: IP
challenge: IN

C.f. Saline Essilfie et al.
(2015), Kim
et al. (2017a),
Kim et al.
(2017b)

↑ AHR (MCh; Rn;
Scireq flexiVent)*

↑ Eosinophils

↑ Neutrophils

Ova BALB/c or
C57BL6J/129SV
female

Sensitization: IP
challenge: NEB 2.5%
(w/v)

C.f. Saline Mookerjee et al.
(2006), Royce
et al. (2011)↑ AHR (MCh;

resistance; Buxco
system)

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils

↑ Collagen

↑ Goblet cell
hyperplasia

Ova BALB/c
female

Sensitization: IP
challenge: NEB 2.5%
(w/v)

C.f. Saline Donovan et al.
(2013), Royce
et al. (2022)↑ AHR (MCh;

resistance; Buxco
system)

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils

↑ Collagen

↑ Goblet cell
hyperplasia

(Continued on following page)
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TABLE 1 (Continued) Experimental asthma models.

Allergen/
strain/sex

Method of
administration

Model protocol Disease
features

Ref

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. Saline Woo et al.
(2018)

↑ AHR (MCh; Rn
and Rrs; Scireq
flexiVent)

↑ Neutrophils

↑ Goblet cell
hyperplasia

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. Saline Piyadasa et al.
(2018)

↑ AHR (MCh; Rn,
damping and
elastance; Scireq
flexiVent)

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils

HDM BALB/c
male

Sensitization: IN
challenge: IN

C.f. Saline Barry et al.
(2013)

↑ AHR (MCh;
resistance; Buxco
system)

↑ Eosinophils

↑ Neutrophils

↑ Goblet cell
hyperplasia

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. PBS Uwadiae et al.
(2019)

↑ AHR (MCh;
airway resistance
and elastance; Scireq
flexiVent)

↑ Lung cells (+
eosinophils) by flow
cytometry

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. PBS Liu et al. (2017),
Ali et al. (2020a)

↑ AHR (MCh; Rn;
Scireq flexiVent or
resistance; Buxco
system)

↑ Leukocytes

↑ Collagen

↑ Goblet cell
hyperplasia

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. Saline Woo et al.
(2018)

↑ AHR (MCh; Rn
and Rrs; Scireq
flexiVent)

↑ Leukocytes*

↑ Eosinophils

↑ Neuts**

(Continued on following page)
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TABLE 1 (Continued) Experimental asthma models.

Allergen/
strain/sex

Method of
administration

Model protocol Disease
features

Ref

*C.f. 4-week chronic
model

**C.f. 4-week
chronic model and
2-week acute model

HDM BALB/c
female

Sensitization: IN
challenge: IN

C.f. PBS Tu et al. (2022)

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils

↑ Goblet cell
hyperplasia

↑ AHR (MCh; Rn;
Scireq flexiVent)

Cockroach
C57Bl/6 sex not
specified

Sensitization: IN
challenge: IN

C.f. Saline Alqarni et al.
(2022)

↑ Leukocytes

↑ Eosinophils

↑ Leukocytes

↑ Mucus secretion
(Muc5ac increased)

Cockroach
BALB/c male

Sensitization: IN
challenge: IN

C.f. Saline Barry et al.
(2013)

↑ Eosinophils

↑ Goblet cell
hyperplasia

↑ AHR (MCh;
resistance; Buxco
system)

Pollen BALB/c
female

Sensitization:SC
challenge: NEB

C.f. Saline Xie et al. (2021)

↑ Eosinophils

↑ Neutrophils

↑ Inflammatory
score

Pollen BALB/c
female

Sensitization: IP
challenge: NEB

C.f. PBS IP Xi et al. (2021)

↑ AHR (MCh;
enhanced pause
[Penh])

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils

↑ Inflammatory
scores

↑ Goblet cell
hyperplasia

(Continued on following page)
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spontaneously and this necessitates the experimental induction of
allergic responses in the airways to model this disease. Numerous
models have been developed and utilize different allergens (ova,
HDM, cockroach, pollen), routes of allergen administration
(intraperitoneal, subcutaneous, intranasal, aerosol inhalation),
and exposure protocols (single versus multiple consecutive
exposures to allergen). Despite these differences, the principles of
inducing experimental asthma are common and typically involve an
initial allergen sensitization phase followed by a challenge phase
where mice are re-exposed to the sensitizing agent to initiate allergic
recall. These models have been successfully developed in multiple
strains of mice, however, BALB/c strain mice are used most often

owing to their TH2-prone immunological response, which allows
these models to more accurately recapitulate hallmark features of
allergic asthma including airway inflammation, airway remodeling,
and AHR. Importantly, the presence and severity of these features
are dependent on the type of allergen used to induce disease, the
exposure protocol, and the measurement of AHR recorded
(Table 1). In addition, the choice of equipment used to measure
AHR can result in different outcomes, mainly in relation to airway
resistance, in different regions of the lung (Rn, Rrs, airway
resistance). Nevertheless, invasive techniques (e.g., Scireq
flexiVent, Buxco systems and eSpira EMMS Spirometry) do
provide more accurate recordings of resistance than non-invasive

TABLE 1 (Continued) Experimental asthma models.

Allergen/
strain/sex

Method of
administration

Model protocol Disease
features

Ref

Pollen BALB/c
female

Sensitization:SC
challenge: NEB

C.f. PBS SC Xi et al. (2021)

↑ AHR (MCh; Penh)

↑ Leukocytes

↑ Eos*

↑ Neutrophils

↑ Inflammatory
scores

↑ Goblet cell
hyperplasia

*C.f. HSE IP

Fungal spores
BALB/c sex not
specified

Sensitization: IN
(spores) challenge: IN
(spores)

C.f. HBSS control Daines et al.
(2021)

↑ AHR (MCh;
resistance; Scireq
flexiVent)

↑ Leukocytes

↑ Eosinophils

↑ Neutrophils*

↑ Inflammatory
scores

↑ Goblet cell
hyperplasia

*C.f. Filtrate model

Fungal spores
BALB/c sex not
specified

Sensitization: IN
(filtrate) challenge: IN
(filtrate)

C.f filtrate control Daines et al.
(2021)

↑ AHR (MCh;
resistance; Scireq
flexiVent)

↑ Leukocytes

↑ Eosinophils*

↑ Neutrophils

↑ Inflammatory
scores

↑ Goblet cell
hyperplasia

*C.f. Spores model
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techniques (e.g., enhanced pause [Penh]) [comprehensively
reviewed in (Bates and Irvin, 2003)]. Comparing AHR across
experimental groups in different studies is challenging as the
measurements of AHR are not directly interchangeable due to
the equipment used and often mice have different baseline levels
of resistance depending on the calibration of the machines. In some
models presented in Table 1, the data are expressed as % change
from baseline/saline which does allow for direct comparisons
between experimental groups and different experiments in other
publications. For transparency in future studies, presenting %
change and raw data would allow for readers to directly compare
the degree of AHR induced by different exposure protocols to
determine the most appropriate model of experimental asthma to
employ. This, along with strain, allergen and exposure protocol, is
imperative to carefully consider the outcomes of interest against the
endo/phenotype that each model can offer.

2.1 Ovalbumin-induced mouse models of
experimental asthma

The mostly widely used allergen that is used to induce
experimental asthma is ova, derived from chicken egg protein.
Ova is commonly administered systemically, via intraperitoneal
or subcutaneous injection, in conjunction with the potent TH2-
inducing adjuvant, aluminium hydroxide (Royce et al., 2011;
Donovan et al., 2013; Essilfie et al., 2015; Kim et al., 2017b; Kim
et al., 2019; Pinkerton et al., 2022) to drive allergic sensitization.
This is followed at a later time by respiratory challenge with ova
to initiate allergic recall responses and model allergen-induced
exacerbations of established allergic disease. These challenges are
often administered intranasally; however, a recent study
highlighted that aerosol challenge, compared to intranasal
challenge with ova, induces greater AHR in response to
50 mg/mL dose of methacholine suggesting that ova-induced
experimental asthma responses are more potently induced by
inhaled, rather than intranasal, ova challenge (Kim et al., 2019).
Ova-induced models are renowned for their reproducibility and
robust allergic inflammatory responses that recapitulate key
disease features including airway inflammation, epithelial
hypertrophy, goblet cell hyperplasia, and AHR (Essilfie et al.,
2015; Kim et al., 2017b; Kim et al., 2019; Pinkerton et al., 2022).
However, and despite this favorable set of outcomes for modeling
asthma experimentally, there is contention about the clinical
relevance of ova as an allergen, which is an important limitation
of this model as it highlights a potential barrier for translation of
findings into human disease. In addition, allergen sensitization
via intraperitoneal injection in conjunction with an adjuvant
does not reflect the natural course of allergen sensitization in
asthma in humans. Ova models are also not associated with
persistent airway remodeling, which is a key feature of human
asthma, and the chosen allergen exposure regimen may induce
disease features that are, or are not, sensitive to corticosteroid
treatment, which further highlights potential limitations of ova-
based asthma models. More recently, experimental asthma
models have moved towards utilizing more clinically and
physiologically relevant allergens and model protocols that are
strongly linked with the human disease.

2.2 HDM-induced mouse models of
experimental asthma

Sharing many similarities to human disease, mouse models of
HDM-induced experimental asthma are characterized by
eosinophil-dominant airway inflammation, airway remodeling,
and AHR (Barry et al., 2013; Woo et al., 2018; Ali et al., 2020a;
Tu et al., 2022). The immune response to HDM is also T2-driven,
with increased IL-5, IL-13, IL-33, IL-25, and thymic stromal
lymphopoietin contributing to eosinophils, type 2 innate
lymphoid cells (ILC2s) and dendritic cell recruitment/activation
in the lung [reviewed in (Jacquet, 2021)]. The hallmark features of
disease are similar to ova-induced experimental asthma, however
HDM-induced experimental asthma can be considered more
clinically relevant as these models have allergic sensitization
through the intranasal route, which can be achieved in the
absence of an adjuvant and is a more realistic representation of
what occurs in humans. Furthermore, HDM induces allergic airways
disease through a combination of toll-like responses and enzymatic
reactions [reviewed in (Abu Khweek et al., 2020)], which may be
absent in ova models. The specific protocol of HDM antigen
exposure is also an important consideration; with acute vs.
chronic HDM exposure models leading to different disease
outcomes (Woo et al., 2018) (Table 1). Furthermore, multiple
preparations of HDM antigen can be used as an allergen (whole
extract vs. components) and this represents an important limitation
in published studies to date, where the type of HDM preparation
that is used for experimentation is often not fully specified. In
particular, the batch numbers of HDM allergens used, and whether
the HDMprotein concentration is determined by bicinchoninic acid
assay (BCA) or Bradford assessment, is often omitted from
manuscripts.

2.3 Fungal-induced mouse models of
experimental asthma

Another common environmental aeroallergen is fungus. Fungal
asthma is poorly managed and causes frequent exacerbations and
hospitalizations (Lehmann et al., 2017). Fungal asthma is considered
predominately a T2 driven disease, however, it can be associated
with T2 low endotypes of asthma (TH1 and TH17 high) (reviewed in
[van Tilburg Bernardes et al., 2020)]. Alternaria alternata is an
allergenic mold that is recognized as a potent aeroallergen and a
common inducer of asthma exacerbations (Daines et al., 2021).
When employed in murine models of fungal asthma, filtrates of A.
alternata are used to sensitize and challenge mice. Recent studies
have also shown that direct spore exposure, as opposed to traditional
filtrate exposure, is more physiologically relevant and has the
capacity to induce similar (and more potent) disease outcomes
(Daines et al., 2021) (Table 1). Aspergillus fumigatus has also
been used in combination with allergen/s to mimic disease
outcomes. The double allergen model involves sensitization and
challenge with dust mite (Dermatophagoides farinae) followed by
intranasal exacerbation with A. fumigatus (Matsuse et al., 2013).
This model has demonstrated key features of experimental asthma,
including increased inflammation (macrophages, neutrophils,
eosinophils and lymphocytes, IL-5, IL-13), and mucus secreting
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cells, and partial steroid-insensitivity to dexamethasone (decreased
macrophages, eosinophils, and IL-5, but no effect on neutrophils,
lymphocytes, IL-13, mucus-secreting cells) (Matsuse et al., 2013).
Furthermore, triple allergen models of experimental asthma have
been established to more accurately recapitulate the human
scenario. These models involve sensitization (on day 0 and 5)
with a triple allergen cocktail (dust mite [D. farinae], ragweed
[Ambrosia artemisiifolia], and A. fumigatus) in the presence of
an adjuvant, followed by intranasal administration of the triple
allergen mixture on days 12, 13, and 14 (Chung et al., 2020). This
model induces hallmark features of asthma including inflammation,
remodeling (increased mucus secreting cells) and AHR (increased
resistance to MCh; Scireq flexiVent).

The continual optimization of murine models of experimental
asthma is an important and indispensable paradigm in the journey
towards increasing our understanding of the underlying
physiological mechanisms that drive asthma pathogenesis.
Crucially, to address the heterogeneous nature of asthma,
researchers have developed many different allergen-induced
models that have allowed for recapitulation of different
endotypes and phenotypes of asthma. Consequently, this has led
to the development of experimental protocols that model severe,
steroid insensitive or resistant phenotypes of asthma; allowing for
the identification of mechanisms that may drive the onset of more
severe disease.

2.4 Infection-induced mouse models of
experimental severe asthma

Mouse models of experimental severe asthma that recapitulate
features of human disease have provided invaluable insight into the
possible mechanisms that are responsible for driving the increased
disease severity and steroid insensitivity that are characteristic of
severe asthma in humans (Table 2). Severe asthma is often
characterized by an insensitivity to currently available
therapeutics and the capacity to model this association
experimentally is crucial. Improving our understanding of
mechanisms underpinning steroid insensitivity (sometimes
referred to as steroid resistance in publications) will identify
novel targets for therapeutic development. Importantly, there is
strong evidence that supports a link between specific respiratory
infections and severe asthma exacerbations, whereby different
infections can induce different phenotypes of severe disease (e.g.,
neutrophilic-dominant vs. eosinophil-dominant). Recent advances
in murine models have incorporated these elements into the
protocol design and have been optimized to model and
investigate the effect of respiratory infections on disease
outcomes (Essilfie et al., 2012).

Infectious pathogens such as C. pneumoniae (Essilfie et al., 2015;
Kim et al., 2017a; Kim et al., 2017b), H. influenzae (Essilfie et al.,
2012; Essilfie et al., 2015; Kim et al., 2017a), RSV (Nguyen et al.,
2016a; Nguyen et al., 2016b; Kim et al., 2017a; Nguyen et al., 2018),
influenza A virus (Kim et al., 2017a), and rhinovirus (Bartlett et al.,
2008) have been used to induce severe disease in mouse models of
experimental asthma. These infections are often induced through
natural respiratory routes after experimental asthma is established,
which reflects the typical scenario of an infection-induced

exacerbation of asthma. An important element of these infection-
induced models is their capacity to model different phenotypes of
severe disease, which provide a platform for the elucidation of
broadly applicable and/or phenotype-specific mechanisms of
pathogenesis. When infections with the natural mouse respiratory
pathogens Chlamydia muridarum or non-typeableH. influenzae are
induced in female BALB/c mice with ova-induced experimental
asthma, this results in steroid-insensitive disease (AHR and total
airway inflammation that are insensitive to dexamethasone
treatment) with a switch from eosinophilic to neutrophil-
dominant airway inflammation (Kim et al., 2017a). Importantly,
these preclinical observations are validated by clinical observations
that show an association between bacterial infection and neutrophil-
dominant inflammation in the sputum of patients with asthma
(Wood et al., 2010). Contrastingly, whilst viral infection (mouse-
adapted influenza A virus or RSV), like with bacterial infection-
induced models of severe asthma, also induce steroid-insensitive
AHR, there is no switch towards neutrophil-dominant
inflammation and total airway inflammation becomes partially
steroid-insensitive (Kim et al., 2017a). Rhinoviruses are also
important viral infections involved the increased risk of asthma
and asthma exacerbations; however, mouse models of rhinovirus
infections are challenging as the major group of rhinoviruses (that
comprises 90% of all rhinovirus serotypes) requires human
intercellular adhesion molecule-1 (ICAM-1) for replication,
which is not present in mice. Nevertheless, minor group
rhinoviruses, such as rhinovirus-1B, can replicate in wild-type
BALB/c mice, and this has been shown to increase AHR in ova-
induced experimental asthma associated with increased neutrophil
responses (Bartlett et al., 2008). Whether this model of rhinovirus
and ova-induced experimental asthma is steroid-insensitive is yet to
be elucidated.

Viral infection models of severe asthma are characterized by
steroid-insensitive eosinophilic airway inflammation and AHR
(Kim et al., 2017a), and this agrees with previous studies
showing that eosinophilic inflammation can be present
despite moderate-to high-dose steroid treatment (Jayaram
et al., 2005; Trevor and Deshane, 2014). Interestingly, in
infection-induced models (bacterial and viral), aberrant
microRNA-21 (miR-21) responses have been shown to drive
steroid insensitivity in experimental severe asthma and
therapeutically targeting miR-21 may offer a broadly effective
treatment for infection-induced severe, steroid-insensitive
asthma.

In addition, components of bacteria, such as lipopolysaccharide
(LPS) or cyclic-di-GMP, have been utilized in HDM-induced
models of experimental asthma to induce features of severe
asthma (Raundhal et al., 2015; Gauthier et al., 2017; Oriss et al.,
2017; Wang et al., 2021a; Gauthier et al., 2022). These models have
provided significant mechanistic insight into the clinical observation
that patients with severe asthma, particularly T2 low patients, are
steroid-insensitive (Woodruff et al., 2009). Importantly, these
studies together have identified key disease-causing and
interconnected roles of dysregulated CXCR3 ligand (CXCL10)/
TH1 cell recruitment/IFNγ/secretory leukocyte protease inhibitor
(SLPI) responses in steroid-insensitive severe asthma (Raundhal
et al., 2015; Gauthier et al., 2017; Oriss et al., 2017; Gauthier et al.,
2022).
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TABLE 2 Experimental mixed-exposure asthma models.

Stimulus/Allergen/
Strain/Sex

Method of
administration

Model protocol Disease features Ref

LPS/HDM BALB/c sex not specified Sensitization: IP challenge: IN C.f. HDM or LPS alone Wang et al. (2021a)

↑ AHR (MCh; Rn; Scireq flexiVent)*

↑ Airway inflammation*

↑ Goblet cell hyperplasia

↑ Inflammatory scores

* Steroid insensitive

NTHi/Ova BALB/c female Sensitization: IP challenge: IN C.f. Ova alone Essilfie et al. (2012), Essilfie et al.
(2015)

↔AHR (resistance; Buxco system)*

↔ Total airway inflammation

↓ Eosinophils*

↑ Neutrophils*

* Steroid insensitive

Cmu/Ova BALB/c female Sensitization: IP challenge: IN C.f. Ova alone Essilfie et al. (2015), Kim et al. (2017a),
Kim et al. (2017b)

↑ Total airway inflammation*

↓ Eosinophils

↑ Neutrophils*

↑ Macrophages*

↔ AHR (Rn; Scireq flexiVent)*

* Steroid insensitive

RSV/Ova BALB/c male Sensitization: IP challenge: IN C.f. Ova alone Nguyen et al. (2016a), Nguyen et al.
(2016b), Nguyen et al. (2018)

↔AHR (MCh; (Rn; Scireq flexiVent)*
(partially steroid resistant)

↑ Neutrophils*

↔ Eosinophils*

* Steroid insensitive

(Continued on following page)
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TABLE 2 (Continued) Experimental mixed-exposure asthma models.

Stimulus/Allergen/
Strain/Sex

Method of
administration

Model protocol Disease features Ref

RSV/Ova BALB/c female Sensitization: IP challenge: IN C.f Ova alone Kim et al. (2017a)

↔AHR (Rn; Scireq flexiVent)
(methacholine)*

↔ Neutrophils*

↔ Eosinophils*

* Steroid insensitive

RSV/HDM C57Bl/6 male Sensitization: IN challenge: IN C.f HDM alone Makino et al. (2021)

↑ AHR (MCh; Rrs; Scireq flexiVent)*

↑ total airway inflammation

↔ Eosinophils*

↑ Neutrophils*

* Steroid insensitive

HDM/cyclic-di-GMP BALBc/ByJ
male and female

Sensitization: IN challenge: IN C.f. HDM alone Raundhal et al. (2015), Oriss et al.
(2017), Gauthier et al. (2022)

↑ AHR (MCh; Rn or Rrs; Scireq
flexiVent)*

↑ Neutrophils*

↔ total airway inflammation*

* Steroid insensitive
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Collectively, infection- or bacterial component-induced
models of severe asthma continue to provide important
mechanistic insight into disease pathogenesis whilst also
highlighting the complexity of severe disease. Considering the
growing appreciation for the differences in immune responses
between male and females, and the differences between sex
hormones, genetics, and epigenetics in asthma [reviewed in
(Chowdhury et al., 2021)], an important future direction will
be to understand how sex hormones influence disease outcomes
in these models. The role/s of sex hormones influencing asthma
and AHR is yet to be fully elucidated however, there is
observational data demonstrating that estrogen receptor β

knockout male and female mice have increased AHR in a
mixed allergen (ovalbumin, A. alternata, A. fumigatus, and D.
farinae) model compared to wild type mixed allergen alone
(Kalidhindi et al., 2019), however the specific roles of
hormone receptors in asthma and the magnitude of AHR
remains to be fully explored. It will also be important to
determine how obesity influences immune responses to
infection, both alone and in the context of asthma and AHR,
and to understand whether the pathogenic mechanisms that have
been identified in models of infection-induced disease (e.g., miR-
21) are also relevant in obesity-associated disease.

2.5 Asthma-chronic obstructive pulmonary
disease (COPD) overlap

Asthma can also overlap with COPD in patients, and these
patients are currently referred to as having asthma-COPD overlap
(ACO). Similar to severe asthma, patients with ACO have chronic
airway inflammation that is linked with airway remodeling,
decreased lung function, wheezing, and shortness of breath
(Leung and Sin, 2017). The cellular composition of the airway
inflammation in these patients is also heterogeneous, however,
ACO has similar endotypes to severe asthma (T2 high, T2 low,
or non-T2). Recent advances in mouse models of experimental ACO
[reviewed in (Tu et al., 2021)] have provided important mechanistic
insights into novel, disease-causing mechanisms in ACO and
identified potential therapeutic targets that may also be applicable
to other forms of asthma. Experimental ACO can be induced by
chronic administration of HDM antigen and concurrent exposure to
cigarette smoke after HDM-induced experimental asthma is
established (Tu et al., 2022). Importantly, this model results in
steroid insensitivity of AHR and other key disease features such as
airway remodeling, which is reminiscent of ACO in humans (Dey
et al., 2022). Comprehensive transcriptomic analysis of airway and
parenchyma tissues in this model revealed robust increases in innate

TABLE 3 Experimental asthma models (diet).

Allergen Method of
administration

Model protocol Disease
features

Ref

HFD/OVA BALB/
c female

Sensitization: IP
challenge: IN

C.f. CC/OVA (lean
disease)

Pinkerton et al.
(2022)

↔AHR (MCh)*

↔ Total airway
inflammation

↔ Eosinophils

↔ Neutrophils

↑ Airway
eosinophils

* Steroid resistant

LID/HDM BALB/
c female

Sensitization: IN
challenge: IN

C.f. CC/HDM
(normal iron)

Ali et al.
(2020a)

↓ Total airway
inflammation

↓ Mucus secreting
cells

HID/HDM BALB/
c female

Sensitization: IN
challenge: IN

C.f. CC/HDM
(normal iron)

Ali et al.
(2020a)

↓ Total airway
inflammation

↓ Mucus secreting
cells

↑ Airway
eosinophils
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immune responses (increased SPI1, TFEC), complement responses,
and disturbances in the expression of metabolism-associated factors
(increased GLMP, PLSCR1, MTF1) (Tu et al., 2022). Significantly,
therapeutic targeting of SPI1 suppressed some of the key features of
experimental ACO, including steroid insensitive AHR (Tu et al.,
2022). These data show that the combination of HDM antigen and
cigarette smoke exposures drive changes in lung function that are
not responsive to mainstay therapies and highlight the potential
utility of this model for deciphering the specific mechanisms that
cause this outcome.

2.6 High fat diet-induced experimental
obesity asthma models

Obesity has been linked with the development of asthma,
however, the mechanisms underpinning this relationship remain
largely unknown. The obese asthma phenotype represents a
significant cohort of asthmatics who have more severe disease
that is commonly refractory to mainstay therapies (Dixon et al.,
2011). To improve our understanding of obese asthma and the
mechanisms underpinning the severe, steroid insensitivity of this
disease phenotype, multiple mouse models of obesity-associated
asthma have been developed and optimized.

Obesity can be modeled in mice through genetic modifications
(mono, polygenic mutations, transgenic mice), surgical or chemical
induction, or, more commonly, by the administration of
hypercaloric, specialized diets (Pinkerton et al., 2022). Diet-
induced models of obesity lead to dietary imbalance, which is the
most common cause for obesity in humans. Compared with
genetically induced/modified models of obesity, the timeframe of
diet-induced obesity is often protracted to model the natural and
gradual accumulation of adiposity that is observed in obesity in
humans. A range of different diets have been recognized to induce
obesity in mice, including high-fat diets (HFD), high-sugar diets,
and a combination of the two that represents aWestern diet (high fat
and high sugar). Whilst this array of diets allows for different facets
of obesity and metabolic disorders to be modeled, it is important to
consider the variations in the macro- and micronutrient profiles of
these different diets. This variability highlights the lack of a
standardized, well-defined diet for modeling obesity and may
underpin the discrepancies in reported outcomes between studies.
Therefore, to ensure reproducibility and consistency across
investigations, it is important that the formulation of diets that
are used to induce obesity are considered and specified.

These different models of obesity have facilitated investigations
into the complex relationship between obesity and asthma (Kim
et al., 2014; Pinkerton et al., 2022). HFD-induced obesity in mice
(HFD; 60% energy derived from fat; Research Diets, D12492) is
characterized by increased total body mass, inflammation
(measured in terms of increased macrophages and ILC3s in the
lung and increased macrophages in adipose tissues), and AHR in
response to methacholine provocation compared to control chow
(CC)-fed mice (Kim et al., 2014). Importantly, this obesity-induced
AHR has been associated with NLRP3 and IL-17 pathway-
dependent IL-17+ILC3 responses. In an independent and more
recent study, HFD-induced obesity in mice (HFD; 60% energy
derived from lipids, 15% energy from protein; Specialty Feeds,

SF14-154), was also shown to be characterized by increased total
body mass as well as adiposity where robust increases in the mass of
major white adipose tissue pads were observed, including the
parametrial, inguinal, and retroperitoneal fat pads compared to
CC-fed mice (CC; 16% energy derived from lipids, 21% energy
from protein; Specialty Feeds SF09-091; Table 3) (Pinkerton et al.,
2022). Furthermore, when superimposed with ova-induced
experimental asthma, HFD-induced obesity was shown to
promote steroid-insensitive AHR but with no significant effect on
allergic airway inflammation when compared to CC-fed, allergic
mice. Significantly, this study also highlighted a novel association
between increased T2 immune (concomitant IL-5 and IL-13
responses) and NLRP3 inflammasome responses in the airway in
obesity-associated severe asthma, providing a potential mechanism
and explanation as to why obese individuals experience more severe
asthma that is refractory to current therapies (Pinkerton et al., 2022).
Importantly, the pre-clinical findings from this study have been
validated in clinical samples, demonstrating this model’s utility for
increasing the understanding of the mechanistic interplay
underpinning obesity-associated severe asthma in humans.
However, whether therapeutic targeting of T2-induced, NLRP3-
mediated responses in obesity-associated severe asthma is effective
in humans, remains to be determined.

The paucity of knowledge relating to the impact of obesity on
respiratory physiology, immune and inflammatory responses, and in
the absence or presence of asthma, highlight essential avenues for
future research and highlights the importance of refining and
interrogating obesity-associated asthma models. Furthermore, it
remains to be determined whether reducing adiposity can alter
respiratory physiology and AHR, or whether specific dietary
nutrients or metabolites can alter respiratory function, and these
are important additional avenues for future study.

3 Pregnancy and the development and/
or severity of asthma in offspring

3.1 Effects of low systemic iron status during
pregnancy effects on offspring

Increased lung iron status is linked to the pathogenesis and
severity of asthma, cystic fibrosis, COPD, and idiopathic pulmonary
fibrosis (Reid et al., 2007; Ghio et al., 2013; Cloonan et al., 2017; Ali
et al., 2020a; Ali et al., 2020b). Interestingly, lower systemic iron
status is also implicated in the development of asthma. Low systemic
iron, as measured by exhaled breath condensate, is associated with
asthma in both adults and children (Ramakrishnan and Borade,
2010; Vlasic et al., 2011; Brigham et al., 2015). Additionally, lower
maternal iron status during pregnancy has been linked with poorer
respiratory outcomes in children (Triche et al., 2011; Bedard et al.,
2018). Maternal anemia in pregnancy is linked to early-life recurrent
wheeze and poorer childhood lung function, as measured by FEV1,
FVC, and physician-diagnosed asthma at age six (Triche et al., 2011;
Bedard et al., 2018). Lower maternal hemoglobin concentration
during pregnancy is also linked with elevated IgE and risk of allergic
sensitization in children (Shaheen et al., 2017).

Intergenerational models of maternal systemic iron status have
predominantly been studied in the context of brain development in
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offspring (Juul et al., 2019). A recent study modeling diet-induced
reduction in systemic iron status during pregnancy found that lower
maternal iron status resulted in offspring with impaired lung
function at baseline, and increased AHR, airway inflammation,
and small airway collagen deposition (Gomez et al., 2021).
However, studies modeling altered iron status during pregnancy
that examine lung function and structure in offspring are limited.

Genetically-induced changes to iron status provide invaluable
enhancements to our understanding of physiological changes from
altered iron status and are essential in modeling genetic disorders,
such as hereditary hemochromatosis, which is an iron overload
disorder that is caused by mutations in the Homeostatic Iron
Regulator (HFE) gene. HFE−/− mouse models of iron overload
have advanced our understanding of physiological processes
involving iron isotype regulation and compositions of numerous
organs and cell types (Albalat et al., 2021). A recent study used an
iron overload model (Hamp knockout) to show that maternal
hepcidin, rather than embryonic hepcidin, regulates embryonic
iron levels (Sangkhae et al., 2020). Systemic iron deficiency has
also been modeled using transthyretin-hepcidin transgenic mice
that overexpress hepcidin (Nicolas et al., 2002), and ferroportin
ablation in intestinal epithelial cells to eliminate intestinal iron
absorption resulting in end-stage iron deficiency anemia
(Schwartz et al., 2019).

Genetic disease models are valuable tools for defining
mechanisms of pathogenesis via gain or loss of function
experiments. However, protocols that involve diet-induced
alterations to iron status are essential for comparing physiological
processing of various forms of iron. This has been demonstrated by a
study that compared ferrous and ferric iron absorption, whereby
examination of the effects of diet-induced iron sufficient status
(35 mg Fe/kg) and iron deficiency (2 and 20 mg Fe/kg) showed
that ferric iron, compared to ferrous iron, may be a more effective
iron supplement due to its slow release and reduced rate of
absorption (Aslam et al., 2014).

Despite these advances, there remains limited understanding of
the mechanisms underpinning the clinical associations between
systemic iron deficiency during pregnancy and childhood asthma
and allergy, which highlights the importance of utilizing
intergenerational iron deficiency and asthma models to examine
these associations. In this scenario, diet-induced models of iron
deficiency are the most clinically relevant approach and would
facilitate assessments of the effects of different iron
supplementation formulae during pregnancy on respiratory
outcomes in offspring.

3.2 Environmental exposures during
pregnancy and the development and/or
severity of asthma in offspring

The fetal origins of adult disease hypothesis proposes that the in
utero environment is critical for determining an individual’s
susceptibility to certain chronic diseases later in life (Barker,
1990). Notably, suboptimal nutritional status, such as
undernutrition due to maternal smoking or maternal exposure to
heavily polluted air, as well as toxins inhaled or ingested by pregnant
mothers, play key roles in fetal underdevelopment and organ

dysfunction after birth (Wang et al., 2020; Chen et al., 2021; Li
et al., 2021). The latent and persistent effects of fetal programming
may arise from epigenetic modifications that permanently change
key regulators of a range of biological processes, including cellular
metabolism (e.g., mitochondrial function) and immune responses
(e.g., heightened pro-inflammatory mediator production) with or
without additional external environmental stimuli after birth
(Barker and Osmond, 1986; Petronis, 2010; Li et al., 2018; Wang
et al., 2020; Chen et al., 2021).

In humans, lung morphogenesis begins at 3 to 4 weeks post-
conception, followed by five stages of intense development
(embryonic, pseudoglandular, canalicular, saccular, and alveolar)
that occur up to 36 weeks post-conception, and completion of lung
development during childhood and young adulthood. In utero
environmental insults during any of the developmental stages can
result in abnormal lung architecture (Li et al., 2021) and function
(Harju et al., 2016; Lee et al., 2018), and increased susceptibility to
asthma (Hazlehurst et al., 2021) and asthma exacerbations after
birth (Gilliland et al., 2001). Tobacco cigarette smoke and particulate
matter (PM2.5) are currently the most commonly occurring in utero
toxins that impair lung function in offspring and increase their
susceptibility to asthma (Li et al., 2018; Wang et al., 2021b; Chen
et al., 2021).

Epidemiological studies suggest that maternal smoking and
inhalation of heavily polluted air are linked to intrauterine
underdevelopment, preterm birth, and small birth weight (Wang
et al., 2020). As a result, lung development and function are
inevitably affected (Hayatbakhsh et al., 2009; Joubert et al., 2016).
Notably, low birth weight and impaired lung function are strongly
linked with the increased prevalence of childhood wheezing and
asthma (Turner et al., 2009; Xu et al., 2014). Both tobacco cigarette
smoke and PM2.5 contain thousands of chemical substances,
including free radicals, that possess strong oxidative properties.
As a result, oxidative stress has been proposed as the common
mechanism that translates maternal exposure to cigarette smoke and
PM2.5 into inflammatory responses and pathology in the lung in
offspring (Sukjamnong et al., 2017; Wang et al., 2021b). Indeed,
maternal exposure to tobacco cigarette smoke and combustion-
generated PM induced systemic oxidative stress in offspring and
greater AHR (Wang et al., 2013; Zacharasiewicz, 2016; Wang et al.,
2021b).

Increased pro-inflammatory cytokine responses, including that
of IL-8, and TH2 hyperactivity reflected by increased IL-5, IL-9, and
IL-13 levels, have been detected in the cord blood of newborns from
smoking mothers (Noakes et al., 2003; Chahal et al., 2017). However,
some infants born to smokers also show changes in toll-like receptor
(TLR) 2 function and attenuation of TNF-α, IL-6, and IL-10 levels
indicating decreased innate immune responses (Noakes et al., 2003).
In animal models, T helper cells including TH1, TH2, TH17, and T
regulatory cells were reduced in offspring born to mothers with in
utero PM exposure (Wang et al., 2013). AHR is also present in the
absence of additional ova challenge in adult mice suggesting that this
is a prolonged effect of in utero exposure (Wang et al., 2021b).
Alarmingly, these adverse effects in offspring still occur as a result of
maternal inhalation of air pollutants that are present at levels
considered safe, and these sequelae are not mitigated by
migrating to a pollutant-free environment after conception
(Wang et al., 2021b). Thus, the in utero effect on AHR most
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likely involves epigenetic changes and the maternally-derived
mitochondrial DNA without modification of genomic profiles
(Shrine et al., 2019). A meta-analysis of 13 cohort studies
identified more than 3,000 CpG islands that are differentially
methylated due to maternal smoking (Shrine et al., 2019). Some of
these effects, such as hypermethylation of ESR1 and CpGs in IL-32,
have been linked with the pathogenesis of asthma (Shrine et al., 2019).
In this scenario, PM exposure can initially cause changes in maternal
DNA methylation (Ferrari et al., 2019) that are then inherited by the
offspring, which could explain why migrating to a pollutant-free area
during pregnancy is not sufficient to mitigate the risk of asthma
development in offspring (Wang et al., 2021b). Additionally,
epigenetic modifications to the fetal genome during in utero PM
exposure can further increase the risk of asthma, such as the
antioxidant superoxide dismutase 2 (SOD2) promoter DNA
methylation, and TMEM184A which is involved in the
inflammatory response (Zhou et al., 2019; Parikh et al., 2022). In
summary, maternal exposure to inhaled toxins, such as tobacco smoke
and PMs, can increase the risk of asthma in offspring via multiple
mechanisms, including impaired lung development and structure,
oxidative stress, immune response, and epigenetic modifications.

4 Conclusions and potential avenues of
investigation

Refinements and innovation in technologies to assess lung
function in mouse models that recapitulate the key features of
asthma and different endo/phenotypes of severe asthma have
significantly advanced the understanding of disease-causing
mechanisms. This has led to improvements in the clinical
management of the disease, however, there remains many endo/
phenotypes of severe asthma that have no effective treatment
options. The use of highly representative mouse models (Tables
1–3) in combination with diet and environmental exposures, are key
to increasing the understanding of mechanisms of pathogenesis,
including drivers of AHR, and should include comprehensive

immune profiling and remodeling assessments. These models
coupled with technological advances in measuring respiratory
physiology, will lead to the identification of new therapeutic
targets that support the goal of achieving disease remission.
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